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ABSTRACT 
 

Lithium-ion batteries are increasingly deployed across a range of 

applications, due to their favorable characteristics. As the demand for these 

batteries increases, addressing future challenges related to secondary life of 

batteries becomes increasingly important. Electrochemical Impedance 

Spectroscopy (EIS) is a widely used technique for evaluating battery life 

span, valued for its simplicity and cost-effectiveness. Nevertheless, EIS 

frequently comes across limitations in distinctly isolating and analyzing 

internal processes. Recently, Distribution of Relaxation Times (DRT) has 

emerged as a valuable analytical method for deconvoluting overlapping 

electrochemical processes, such as ohmic resistance, solid electrolyte 

interface (SEI) resistance, charge transfer, and diffusion, from EIS data. In 

this paper, we propose the use of DRT peak parameters of the most 

prominent charge transfer process across the various State of Charge 

(SOCs) as inputs to an AI-based model for accurate State of Health (SOH) 

estimation. Experimental data were gathered from aged lithium-ion 

batteries, and the LSTM-based model was developed and evaluated using 

these features. Accuracy of the results demonstrates the novelty of the 

approach, in addressing the need of reliable battery state estimation 

methods which is critical of lithium-ion batteries across various 

applications. 

1. Introduction 
Lithium-ion batteries (LIBs) are fundamental to a wide range of 

modern technologies, powering devices from smartphones to electric 

vehicles due to their high energy density, long cycle life, and operational 

efficiency. As these batteries approach the end of their first-life usage, there 

is increasing interest in repurposing them for second-life applications, such 

as energy storage systems. However, one of the key challenges in extending 

the useful life of LIBs is the accurate estimation of their state of health 

(SOH), which is crucial for determining their viability in second-life 

applications. Developing reliable methods for battery state estimation is 

therefore essential for optimizing the performance and safety of these 

batteries [1]. 

Electrochemical Impedance Spectroscopy (EIS) has long been utilized 

as a critical technique for evaluating the health of LIBs. EIS provides 

insight into the electrochemical properties of the battery by measuring its 

impedance response over a range of frequencies, revealing information on 

internal resistive and capacitive elements. This technique has proven useful 

in assessing battery degradation and aging, offering a macroscopic view of 

the processes occurring within the cell. However, EIS alone has limitations 

in capturing the detailed chemical processes at play, leaving gaps in 

understanding the internal mechanisms responsible for battery aging and 

degradation. 

Distribution of Relaxation Times (DRT) has gained attention as an 

advanced method for refining impedance analysis to address these 

limitations. DRT deconvolutes impedance spectra, offering enhanced 

resolution of individual electrochemical processes and their associated 

timescales. This enables a more nuanced understanding of the internal 

dynamics governing battery performance. By combining EIS with DRT, it 

becomes possible to extract more detailed information regarding the 

internal chemical behavior of the battery, providing a comprehensive 

framework for evaluating battery health. This study applies both techniques 

to enhance the accuracy of SOH estimation in lithium-ion batteries, with a 

focus on second-life applications [1].  

In this paper, the DRT method is utilized to analyze EIS data with the 

aim of extracting key parameters that represent critical internal processes 

within the lithium-ion battery. Specifically, the charge transfer peak, 

identified as the most prominent feature within the DRT spectrum, is 

employed to train a Long Short-Term Memory (LSTM) model for the 

estimation of the SOH of the Galaxy S9+ battery cell. By leveraging the 

model-free nature of DRT, this approach allows for a more detailed and 

process-specific understanding of battery aging. The integration of DRT-

derived features into the AI-based model offers an advanced framework for 

improving the accuracy of SOH estimation, thereby contributing to the 

development of data-driven methods for monitoring the long-term 

performance of lithium-ion batteries. 

2. Methodology 
2.1 Battery Aging Data 

In this section, the aging test of the Galaxy S9+ smartphone lithium-

ion battery is described [2]. The specifications of the battery used in the test 

are presented in Table 1. The aging of the battery cell was carried out 

through charge and discharge cycles, with capacity and impedance spectra 

measurements taken every 20 cycles. The aging test was conducted with 

lithium battery of the same specifications over a duration of 1000 cycles. 

The cycle aging and EIS tests for the lithium battery were conducted using 

the HYSCLAB chamber, maintaining a constant temperature of 25°C. 

Battery charge and discharge, as well as EIS tests, were conducted using 

WonATech's WBCS3000 M2 and ZIVE MP2A equipment, respectively. 

During the charging phase of each cycle, a constant current of 2A was 

applied until the battery reached its cut-off voltage of 4.4V, after which it 

transitioned to a constant voltage phase, continuing until the charging 

current decreased to 0.02C. For discharging, an accelerated test was 

conducted with a discharge current of 1.35C, with the discharge ending 

once the voltage dropped to 2.8V. A rest period of one hour followed each 

discharge before beginning the next cycle. After every 20 charge-discharge 

cycles, Electrochemical Impedance Spectroscopy (EIS) measurements 

were initiated. These measurements were conducted at 20% intervals of 

state of charge (SoC) from 0% to 100%. Once the EIS measurement at 100% 

SoC was completed, the battery was discharged at a rate of 0.2C until 

reaching the cutoff voltage of 2.8V, and the cycle process was repeated. 

The EIS tests used a 100mV perturbation and spanned a frequency range 

of 0.1 Hz to 4 kHz. While increasing the frequency of EIS measurements 

could provide more detailed impedance data, it also accelerates battery 

degradation and significantly extends testing time. Therefore, a frequency 
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of every 20 cycles was selected to maintain the balance between accuracy, 

testing time, and minimizing additional battery wear. 
Table 1. Specification of the Galaxy S9+ Battery used for the Aging Test. 

During the battery aging test, impedance data were measured at every 

20-cycle interval up to 1000 cycles. The initial capacity and the remaining 

capacity of the battery relative to its nominal capacity was calculated. After 

the 1000 cycles battery capacity decreased from 97.71% to 90.76% [2]. 

3. Analysis of Electrochemical Impedance 

Spectroscopy and Distribution of Relaxation Time 
EIS is widely used technique for characterizing the internal dynamics 

of the battery. It captures the battery impedance response, revealing insights 

into various electrochemical processes, these processes can be interpreted 

by Nyquist plots. In this study, EIS measurements are taken at every 20 

cycles and at six different SOCs to track the battery internal electrochemical 

processes [2]. Fig. 1 represents Nyquist plots of impedance spectra for 0-

1000 cycles at 100% SOC for highlighting the changes in the impedance 

over time. High frequency intercept of the Nyquist plot, representing ohmic 

resistance, remains stable initially but increases over time. SEI layer’s semi-

circle also acts similarly, second semicircular arc in the mid-frequency 

region, which is associated with the charge transfer resistance which 

dominates in aging process of this battery [3]. Due to the specific 

measurement range of the frequency, the diffusion process is present in the 

spectra but not fully represented. 

In Fig. 1, the overlapping semi-circles complicate the clear distinction 

of electrochemical processes, which should ideally be represented 

separately. The height and width of these semi-circles increase with battery 

cycling, but their similar reaction time constants lead to superimposition in 

the impedance spectrum. This overlap obstructs the isolation of individual 

relaxation times and amplitudes, making it more challenging to interpret 

the impedance spectrum and understand the mechanisms of battery aging.

 
Fig.1. Nyquist plots of S9+ at 0-1000 cycles (SOC 100%) 

However, by using DRT analysis, we can more effectively deconvolve 

and understand the individual electrochemical processes within the battery. 
DRT enhances this analysis by breaking down the impedance spectrum 

into distinct peaks, each corresponding to a different internal process. A 

wider range of frequencies provides more detailed information about what 

is happening inside the battery. The higher frequencies region reveals faster 

processes like chemical reactions, while lower frequencies reveal slower 

processes like ion diffusion within the battery [1].  

DRT plots, as illustrated in Fig. 2, show a prominent peak associated 

with charge transfer resistance, which broadens and shifts to longer 

relaxation times with cycling. Additionally, smaller peaks related to other 

processes, such as ohmic resistance, double-layer capacitance, and 

diffusion also change with the number of cycles, providing deeper insights 

into the battery's internal condition. The ability of DRT to isolate these 

individual processes provides a clearer understanding of battery 

degradation, which is critical for improving SOH estimation models.

 
Fig.2. DRT plots of S9+ at 0-1000 cycles (SOC 100%) 

4. Results and Analysis 
4.1 DRT Parameters Evolution with Battery Aging 

Fig. 3 presents the variation of the key parameters including the peak 

area, full width at half maximum (FWHM), center relaxation time and the 

peak height of charge transfer peak in the DRT plots over 1000 cycles 

across the six different SOCs (0%, 20%, 40%, 60%, 80%, and 100%). 

These parameters are obtained by applying the gaussian fitting on the 

charge transfer peak for each DRT plot [4]. The DRT parameters exhibit 

distinct trends that vary with both the number of cycles and the SOC. 

Notably, the FWHM generally increases with the number of cycles, 

Fig.3. Variation in DRT Parameters of charge transfer peak at different SOCs over 

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0.00

0.01

0.02

0.03

0.04

Z
''
(Ω

)

Z'(Ω)

Fresh Aged

1E−4 0.001 0.01 0.1 1 10

0.00

0.01

0.02

0.03

0.04

G
(s
)[
Ω
/s
]

tau[s]

AgedFresh 

0 200 400 600 800 1000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

V
a

lu
e

Number of Cycles

 Area

 FWHM

 Center

 Peak Height

SOC 0%

0 200 400 600 800 1000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

V
a

lu
e

Number of Cycles

 Area

 FWHM

 Center

 Peak Height

SOC 20%

0 200 400 600 800 1000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

V
a

lu
e

Number of Cycles

 Area

 FWHM

 Center

 Peak Height

SOC 40%

0 200 400 600 800 1000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

V
a

lu
e

Number of Cycles

 Area

 FWHM

 Center

 Peak Height

SOC 60%

0 200 400 600 800 1000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

V
a

lu
e

Number of Cycles

 Area

 FWHM

 Center

 Peak Height

SOC 80%

0 200 400 600 800 1000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

V
a

lu
e

Number of Cycles

 Area

 FWHM

 Center

 Peak Height

SOC 100%

Property Value 

Nominal Capacity 3,500mAh 

Nominal Voltage 3.85V 

Maximum Voltage 4.4V 

Charge Current 2,000mAh 

- 53 -



1000 cycles 
suggesting a distribution of relaxation times becomes more pronounced 

due to the increasing complexity of the electrochemical processes involved. 

Conversely, the peak area, center relaxation time and peak height also tends 

to broaden, indicating an enhancement in the charge transfer resistance as 

the battery ages [4]. 

The incremental trend of the parameters is observed with higher rate at 

0%, 80% and 100% SOCs which means at both ends of SOC. This could 

be due to increased electrochemical activity and increased stress on battery 

materials. The analysis also reveals that the charge transfer resistance peak 

shifts towards longer relaxation times with increased cycling. Overall, these 

DRT parameters provide valuable insights into the aging mechanism of the 

battery which can help to build the reliable model for battery state 

estimation.  

4.2 LSTM Model Performance 

The Long Short-Term Memory (LSTM) model is a type of recurrent 

neural network that is selected particularly effective in learning from 

sequential data [5-6], making it ideal for modeling the time-dependent 

behavior of battery degradation, represented by Fig. 4. The input features 

for this model included four DRT parameters of charge transfer peak (Peak 

Area, FWHM, Center Relaxation Time and Peak Height) and SOC as an 

input and SOH as an output collected over 1000 cycles, which is then 

divided into training (80%) and testing (20%) sets, ensuring the balanced 

distribution of varying battery states. 

These features are processed through two LSTM layers with 210 and 

200 memory units, respectively, using the tanh activation function. A single 

output layer with a linear activation function predicted the SOH. To prevent 

overfitting, a 40% dropout rate was applied, and the Adam optimizer, with 

a learning rate of 0.001, minimized the loss. The model was trained for 175 

epochs, with a batch size of 16, balancing training time and accuracy. This 

setup was chosen after tuning hyperparameters to ensure optimal prediction 

performance. 

 
Fig.4. Architecture of LSTM for SOH estimation 

The LSTM model was applied to predict the state of health (SOH) of 

the Galaxy S9+ battery across 1000 cycles. Fig. 5 presents the comparison 

between the actual SOH and the predicted SOH. As shown in the figure, 

the model effectively tracks the actual trend of SOH degradation over time. 

The predicted SOH values closely follow the actual SOH, with the majority 

of predictions falling within a reasonable margin of error. This 

demonstrates the model’s capability to capture the battery's aging process. 

However, minor variations are observed, particularly in the early stages 

of the battery life cycle. The model tends to overestimate the SOH, which 

might be due to the insufficient historical data at the beginning of the cycle 

life, making it hard for the model to fully capture it. Conversely, during the 

later stages model show minor underestimations might be due to non-

linearities in the battery aging process as it approaches the higher cycles. 

The Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) below in equations may also be used to evaluate the prediction 

performance of the trained model [5]. 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑒𝑖|

𝑁
𝐼                    (1) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑒𝑖)

2𝑁
𝑖               (2) 

The MAE defines how near estimates are to the corresponding results. 

The RMSE, which indicates the variation in errors, is more sensitive to 

large errors than the MAE. Despite these variations, model’s performance 

can be evaluated by MAE and RMSE calculated as 0.38% and 0.541%, 

respectively. These performance metrices highlight the effectiveness of 

DRT parameters in handling the long-term predictions of SOH of the 

lithium-ion batteries. Future improvements could involve including 

additional parameters from electrochemical processes such as ohmic 

resistance, SEI dynamics, and diffusion, together with alternative models 

like GRU and XGBoost to enhance the accuracy and robustness of analysis. 

 
Fig.5. Actual SOH and Predicted SOH by the Model 

5. Conclusion 
This study highlights the effectiveness of integrating Distribution of 

Relaxation Times (DRT) with Electrochemical Impedance Spectroscopy 

(EIS) for enhanced battery state estimation. By analyzing DRT peak 

parameters over the cycle life of aged lithium-ion batteries at varying SOC 

levels, we successfully developed an LSTM-based model to estimate State 

of Health (SOH) with high accuracy. The model yielded significant 

predictive performance, with Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE) of 0.38% and 0.541% respectively, indicating its 

potential to substantially enhance the reliability of battery health 

assessments. This approach presents a sustainable solution for managing 

the lifecycle of lithium-ion batteries in diverse applications. Future work 

could refine these results by incorporating additional electrochemical 

parameters and exploring alternative models such as GRU and XGBoost 

to enhance predictive capabilities. 
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